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Abstract

Purpose Magnetic resonance imaging (MRI) is a common technique in image-guided neurosurgery (IGN). Recent research
explores the integration of methods like ultrasound and tomography, among others, with hyperspectral (HS) imaging gaining
attention due to its non-invasive real-time tissue classification capabilities. The main challenge is the registration process,
often requiring manual intervention. This work introduces an automatic, markerless method for aligning HS images with
MRI.

Methods This work presents a multimodal system that combines RGB-Depth (RGBD) and HS cameras. The RGBD camera
captures the patient’s facial geometry, which is used for registration with the preoperative MR through ICP. Once MR-
depth registration is complete, the integration of HS data is achieved using a calibrated homography transformation. The
incorporation of external tracking with a novel calibration method allows camera mobility from the registration position to
the craniotomy area. This methodology streamlines the fusion of RGBD, HS and MR images within the craniotomy area.
Results Using the described system and an anthropomorphic phantom head, the system has been characterised by registering
the patient’s face in 25 positions and 5 positions resulted in a fiducial registration error of 1.88 & 0.19 mm and a target
registration error of 4.07 £ 1.28 mm, respectively.

Conclusions This work proposes a new methodology to automatically register MR and HS information with a sufficient
accuracy. It can support the neurosurgeons to guide the diagnosis using multimodal data over an augmented reality represen-
tation. However, in its preliminary prototype stage, this system exhibits significant promise, driven by its cost-effectiveness
and user-friendly design.

Keywords Hyperspectral - Image registration - MRI - Computer-assisted intervention

Introduction

Magnetic resonance imaging (MRI) has become one of the
most important techniques in the image-guided neurosurgery
(IGN) field. This technology allows the generation of multi-
planarimages of the human body’s internal structures without
posing any contraindication, enabling differentiation among
various types of tissues. For this reason, MRI has proven its
effectiveness in neurosurgery for several purposes. Itincludes
clinical diagnosis [13], treatment planning [22], or surgery
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assistance [16]. However, despite the evident advantages of
using MRI, this solution presents some limitations.

One fundamental problem is that the diagnosis relies on
the neurosurgeon’s criteria when interpreting the results,
requiring extensive prior knowledge and being susceptible
to errors. For this reason, many researchers have addressed
the task of automatizing the MRI interpretation by means of
machine learning (ML) algorithms [6, 15, 19], in some cases
mixing the magnetic resonance (MR) information with other
medical image sources such as computed tomography (CT),
positron emission tomography (PET) [20], ultrasounds (US)
[8], or hyperspectral (HS) imaging (HSI) [9, 14]. Another
key challenge is the visualization, as the volumetric infor-
mation generated by the MR is not easily interpretable on a
2D screen. This has initiated a research line on augmented
reality (AR) [2, 11] to enhance the human—computer inter-
action (HCI).
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This work aims to address the previous limitations by
proposing HyperMRI, a novel AR multimodal methodol-
ogy and system based on MRI and HSI for assisting brain
tumour resection operations. To do so, we introduce a mark-
erless, costless and scalable method to perform a registration
between a group of rigidly attached cameras and the MR
3D model. In this way, the HS real-time information cap-
tured during the surgical information can be mixed with the
MR brain model information. The proposed methodology is
devised to be employed under an external tracking system,
allowing to preserve the registration even if the camera group
moves. The use of an external tracking system also allows
a seamless integration of HyperMRI into common neuron-
avigation systems, as they are based on the same tracking
technology [1].

Materials and methods

HyperMRI aims to work under the scenario presented in
Fig. 1a. In this scenario, (i) HyperMRI is employed to regis-
ter the preoperative MR information with the actual patient.
(i1) HyperMRI (detailed in Fig. 1b) is composed of a rigidly
attached Azure Kinect DK RGBD camera (Microsoft) that
provides essential geometric data through a depth-sensing
device (iii) and HS snapshot camera (Ximea) (iv). The HS
camera is employed to perform a tissue classification. The
rigid group of cameras also features infrared markers to allow
system tracking using an external tracking system (v). This
way, the camera can freely move in the space without losing
the registration.

To ensure the precise integration of the HS camera with
the MR, in this work, two critical calibration procedures are
implemented. First, a homography calibration is conducted
to establish the correct information projection from the HS
camera onto the RGBD camera or onto the MR image when it
is registered, shown in Fig.2b. Secondly, a novel geometric
calibration method to register HyperMRI and the external
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tracking system is applied, enabling the movement Hyper-
MRI, depicted in Fig. 3b.

After the cameras have been calibrated and integrated into
the tracking framework, the following essential task is align-
ing the data captured by all cameras with the MR images. This
alignment is critical to create a unified and coherent view of
the surgical environment, where all data sources seamlessly
complement each other, enhancing the precision of guidance
and diagnosis.

Subsequent sections of this paper will provide a detailed
explanation of the methodology used to achieve this align-
ment. This process encompasses aligning HS, RGBD and
MR data to ensure smooth coordination between the cameras
and the tracking system. This comprehensive approach guar-
antees that the combined data correspond accurately to the
actual surgical scene, benefiting image-guided neurosurgery.

Calibration methods
Homography calibration

The calibration procedure, based on the DLR CalLab frame-
work (German Aerospace Center) [18], is crucial in deter-
mining each camera’s intrinsic and extrinsic parameters.
Intrinsic parameters encompass perspective projection, lens
and sensor distortions, and digitization. Simultaneously,
extrinsic parameters are essential for establishing the rela-
tive positions and orientations between the infrared (IR) and
HS cameras and between the IR and RGB cameras. Radial
distortion calibration [24], using the rational function model
[4], ensures accurate matching between cameras for proper
alignment.

In the calibration process, multiple images of a chess-
board are captured from various positions, as depicted in
Fig.2a. It is important to note that all cameras remain sta-
tionary while capturing multiple images during calibration.
To achieve consistency in calibration, the IR camera serves
as the common reference for all three cameras. This strategic
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Fig.2 Homography calibration

(a) Homography procedure

choice ensures alignment with depth information, ultimately
facilitating precise and accurate calibration.

The obtained parameters are depicted in Fig. 2b. The ini-
tial step in the calibration process involves determining the
unique intrinsic parameters for each camera. These intrin-
sic parameters are essential as they serve as the foundation
for the subsequent extrinsic calibration procedure. Then, two
homography matrices are extracted between (i) IR and RGB
cameras and (ii) IR and HS cameras.

The calibration procedure enables the integration of addi-
tional information into each camera. This includes overlaying
HS classifications of brain tissues onto the RGB images, a
concept previously presented in [14], as well as overlying the
HS information onto the MR volume.

RGBD—tracking system calibration

Another important calibration procedure in this work involves
integrating HyperMRI with a tracking system. The impor-
tance of this integration stems from the fact that the patient’s
face is visible during the registration step, but as the surgery
starts, the face becomes hidden. To address this issue, it is
necessary to reposition the camera from the initial view of the
patient’s face to the craniotomy area, where the HS camera

Fig.3 Optitrack-IR calibration
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can capture the exposed brain tissue. To achieve this repo-
sitioning, a novel calibration method has been developed to
track the cameras’ positions in three-dimensional space accu-
rately. The calibration procedure is shown in Fig. 3.

In this calibration procedure, both HyperMRI and a cal-
ibration tool, shown in Fig. 3a, are tracked using Optitrack,
an external tracking system [12]. Flat reflective markers are
used to ensure the positions of the centre of mass provided by
Optitrack and the centre of the marker are identical. To exe-
cute this calibration effectively, capturing multiple images
using the IR camera of the reference object in different posi-
tions is necessary, as shown in Fig.3a. The primary aim of
this calibration is to determine the relative rotation and trans-
lation between the centre of mass of the reflective markers in
the Optitrack coordinate system and the optical centre of the
IR camera (matrix M, in Fig. 3b), as depicted in Fig. 3b.

For each image capture, the positions and rotations of both
the camera (C in Fig.3) and the markers (G in Fig.3) are
determined using Optitrack’s Motive software [12]. When an
image is taken with the IR camera, it is necessary to detect
the markers within the image. Notably, due to the reflective
nature of these markers in the infrared spectrum, the pixel
values corresponding to the markers tend to saturate the cam-

Tracking system coordinates |

(b) Optitrack-IR calibrations

(a) Calibration Optitrack and HyperMRI. Sys- schema. Location of optical centre

tem setup and the transformation relationship.
In gray different calibration tool positions

(V), camera body position (C), and
calibration result (M)
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era’s sensor. This saturation greatly simplifies their detection
in the captured images.

After detecting the markers, the next step involves com-
puting the marker centres to enhance the correlation between
the positions provided by Optitrack and those by the cam-
era. Subsequently, correspondences are established between
the (x, y, z) coordinates from Optitrack and the (u, v) pixel
coordinates from the camera. An efficient correspondence
approach has been implemented in this process. The mark-
ers on the calibration tool, aligned linearly, are ordered by
their x-coordinate inversely to the u-coordinate in the image.
In simpler terms, when the camera is focused on the calibra-
tion tool, the marker with the highest x-value corresponds to
the marker centre with the lowest u-coordinate in the camera
image.

Once the markers are detected, and the correspondences
are stabilised, a perspective-n-point (PnP) [21] algorithm is
employed to estimate the camera pose in the Optitrack coor-
dinate system, obtaining transformation V in Fig. 3b. Finally,
the computation of the matrix M is depicted in Eq. 1.

M=cl.v ey

MR registration

The novel registration method introduced in this work relies
on the exploitation of the geometric data obtained from the
patient’s face to establish alignment with the preoperative
MR information. The RGBD camera plays a crucial role
in this process. It is responsible for two relevant functions:
firstly, it detects the patient’s face in the RGB image, and sec-
ondly, it generates the point cloud data of the face by using
the depth information, as described in Fig. 4.

A preprocessing procedure is essential to extract the
patient’s face from the MR volume information for subse-
quent use in the alignment process with the depth camera.
To accomplish this, it is necessary to align the coordinates of
the MR with those of the camera, effectively positioning the
patient’s face in the view of a virtual camera. This alignment
is achieved by using principal component analysis (PCA) to
compute the principal components of the MR volume. The
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first component, which is perpendicular to the optical axis of
the camera, serves as an up vector. The second component
aligns with the camera’s optical axis, pointing directly at the
tip of the patient’s nose, ensuring precise alignment with the
patient’s facial features. With the MR volume aligned to the
virtual camera, the next step is to project only the points clos-
est to the camera onto the camera plane using a hidden point
removal algorithm [7].

Regarding the RGBD camera, the initial step involves
detecting the patient’s face, utilising the YuNet neural net-
work [25]. This neural network provides the bounding box
that encloses the patient’s face. Subsequently, the coordinates
of this bounding box are projected onto the depth map using
the homography matrix that relates the IR and RGB cam-
eras. Only the pixels within the depth map that fall inside
this bounding box are then unprojected, this process is facil-
itated by the intrinsic parameters of the IR camera (K matrix
in Fig. 5a). This unprojection creates the patient’s face point
cloud while excluding external information that could hin-
der the registration procedure. Furthermore, a calibration
of the depth camera was conducted to minimise measure-
ments errors characterised by the manufacturer [10]. Using
the tracking system, the distance between a white plane and
the camera was measured, compared to the depth provided by
the camera at intervals of 5 cm along an 80 cm range, repeated
25 times. These data were fitted to a curve to correct the depth
of the patient’s face.

Once the point cloud of the patient is extracted, it is pro-
vided to the iterative closest point (ICP) algorithm [17] along
with the patient’s face data from the MR. To enhance the reg-
istration process, an initial transformation is computed using
the RANSAC method [3], which serves as the preliminary
step for the ICP algorithm until convergence. This resul-
tant transformation (T in Fig. 5a) represents the relationship
between the MR and the RGBD camera in that specific posi-
tion. This transformation is further adjusted to enable camera
movement by incorporating the current camera position (C
in Fig.5a) following Eq.2 to obtain the absolute position
of the MR in Optitrack’s coordinate system (M in Fig. 5a).
This process is repeated along the time, computing a new
transformation matrix by frame and feeding a Kalman filter
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Fig.5 MRI registration. First,
the patient’s face point cloud is
extracted using depth data from
HyperMRI; then, this point
cloud is registered with the MR
volumetric information using
ICP; as a result, a fusion of blue
(MR) and orange (face point
cloud) data and transform G is
obtained

(a) Register schema between depth information and MRI

with these transformations to mitigate the noise in the depth
map and the tracking system and obtaining a final alignment
between the MRI (blue point cloud) and the actual face of
the patient (orange point cloud) as depicted in Fig. 5b.

G=C-M-T! (2)

Experimental results

The feasibility of the methodology and system was evalu-
ated using a human head phantom (Fig.6). Following the
approach in [5], a patient’s complete head was not recreated,;
instead, an expanded polystyrene (EPS) head served as the
base. A brain segment was 3D-printed based on a real MR
image and integrated into the EPS head to visually assess
the alignment between MR and HS data. The MRI data were
obtained from the 3D-printed head using an EinScan Pro
2X 3D scanner (Shining 3D) and quantified using 3D-Slicer
software to create the MRI volume.

For consistent registration experiments, a 2-degree of
freedom system, as illustrated in Fig.6a, was constructed.
This system comprises an XY linear actuators that facili-
tate camera movement within a plane parallel to the ground,
assembled using aluminium rail slots and motors. The system

Fig.6 Experiment materials
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is controlled with a Duet 3 Main Board 6HC and RepRap-
Firmware 3 firmware achieving 6400 steps/mm resolution.

To establish a baseline reference in the registration pro-
cess, a fiducial marker approach was employed, using a
Micron Series Digitizing probe (Optitrack) in conjunction
with 3D-Slicer and the SlicerIGT extension [23].

Homography calibration results

As previously mentioned, a critical step in the methodology
proposed in this work involves the intrinsic and extrinsic cali-
bration of the different cameras comprising HyperMRI. The
calibration process, as described in “Homography calibra-
tion” section, entailed capturing 8 images for each camera
using a radon chessboard with a grid of 32 x 25 corners.
To enhance the quality of the obtained parameters, all cap-
tures were interpolated to a 3840 x 2160 pixels resolution,
except for the RGB camera, which already features that res-
olution (IR native resolution 640 x 576, HS native resolution
409 x 217). To assess the calibration’s quality, a reprojec-
tion root-mean-error (RMSE) in pixels was retrieved for each
camera by the CalLab software. Also, this error is computed
for each pair of cameras, measuring the quality of the extrin-
sic parameters. The results obtained are presented in Table 1
using the interpolated 4K resolution in each camera.

(a) Actuators system

o

(b) EPS phantom
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Table 1 Reprojection RMSE [pixel] for each camera and between them
in 4K resolution

IR camera RGB camera HS camera
Intrinsics 0.67 0.74 16.22
Extrinsics Ref. 0.71 5.17

RGBD—Tracking system calibration results

In the context of the calibration of the optical centre of the
IR camera with the tracking system, it is important to note
that the Optitrack system has its own calibration procedure
to ensure proper functionality. The Optitrack system was
calibrated using the manufacturer’s tools, resulting in arepro-
jection RMSE of 0.34 + 0.1 mm in an approximate volume
space of 4 x 3 x 2 m.

Concerning the novel calibration method described in Sec-
tion “RGBD—Tracking system calibration", 20 captures of
the IR camera were utilised, with the corresponding coor-
dinates of the reference object incorporated. To gauge the
accuracy of this calibration, the reprojection RMSE was
employed, resulting in an error of 1.92 + 0.54 pixels.

MR registration results

To evaluate the quality of the MR registration methodology
a pilot study making use of the phantom, probe, actuator
system and reference software described at section “Experi-
mental results” was conducted. The experiments concern two
quality evaluations: one assesses the performance at the reg-
istration position, measuring the Fiducial Registration Error
(FRE), and the other uses points not involved in the trans-
formation computation, quantifying the Target Registration
Error (TRE). Both the HyperMRI system and the 3D-Slicer
system have been characterised in this way, as illustrated in
Fig.7. In these experiments, the automatic processes were
repeated 25 times, while the manual ones were repeated 5
times to extract the mean and standard deviation of the data.

Fig.7 Experiment schema for SRS S e —
3D-Slicer and HyperMRI. /i B
Orange elements represent
landmarks and point clouds used
for the registration procedure to
extract the FRE metric, while
blue elements are used to
compute the TRE metric N =7

T
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I
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\
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(a) 3D-Slicer experiment
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The characterisation procedure of the baseline reference
using 3D-Slicer involves two distinct steps, illustrated in
Fig.7a: (i) the registration, which entails selecting landmarks
in the preoperative image using 3D-Slicer and establishing
their correspondence by using the Optitrack probe, and (ii)
the evaluation, where the same process is repeated with points
not used in the registration to compute the distance between
them and the MR points transformed with the registration
transformation. The outcome of the first step is the FRE met-
ric, while the outcome of the second is the TRE. These results
are introduced in Table 2, where each experiment is repeated
5 times.

Concerning the HyperMRI system, two experiments were
conducted, mirroring the methodology used in the 3D-Slicer
experiments but employing the point cloud retrieved by the
depth camera instead of sample points, as shown in Fig. 7b.
For the registration procedure, a total of 25 positions were
examined using the actuator system, arranged ina 5 x 5 array
with a 10-cm gap between each position. The FRE was com-
puted by determining the distance between the point cloud
extracted from the patient’s face (orange surface in Fig. 7b)
during the registration process and the corresponding region
in the preoperative image. For the evaluation procedure, 5
registrations were performed to extract the TRE metric. The
camera was subsequently moved to the evaluation position,
where all visible points on the phantom head (blue surface
in Fig. 7b) were utilised to compute the TRE metric making
use of ICP to avoid human bias. The results of both metrics
are presented in Table 2.

Finally, a comparative analysis was conducted using the
25 registered positions used for HyperMRI’s FRE character-
isation. The distances between landmarks in the MR images
transformed with 3D-Slicer and with HyperMRI registration
were computed and referred as Relative Registration Error
(RRE) in Table 2.

AR user interface

To visualise the overlap between the HS image and the MR
information, an augmented reality user interface was devel-

/ Registration
position

S — ="

~

Evaluation .
" .
position -1

(b) HyperMRI experiment
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Table 2 Registration errors and

times for HyperMRI and Method FRE (mm) TRE (mm) RRE (mm) Time/register
3D-Slicer 3D-Slicer 1.1+025 3.1140.80 Ref < 4 min
HyperMRI 1.88 +0.19 407 +1.28 3.98 + 1.02 5254068 s

Fig.8 AR user interface. a MR
(orange) registered with the
depth information (grey), and
the RGB and HS image planes.
b MR (orange) HS image
overlapping

(a) AR user interface

oped. This interface was created using Python and leveraged
the VTK library for HyperMRI data representation.

As illustrated in Fig. 8a, the point cloud extracted from
the depth camera is displayed in greyscale, the MR volume
isrepresented in blue, and the RGB and HS images are shown
on planes. The user interface allows to fix the point of view
on one of the cameras, e.g. the HS camera, as demonstrated
in Fig. 8b (note the overlap between MR and HS images in
greyscale).

The position of HyperMRI is updated in real time based on
the information provided by the Optitrack system. Addition-
ally, the point cloud and images are updated at a smooth frame
rate of 30 frames per second. This user interface enables to
visualise the overlap between the HS and MR information,
as shown in Fig. 8b, and also to easily navigate through the
MR volume and the 3D environment.

Conclusion and future work

This paper has introduced the HyperMRI prototype and a
comprehensive methodology for precise patient registration
in neurosurgery applications. The proposed methodology
seamlessly integrates additional information, such as HS
technology and RGB images, into the patient’s preoperative
MRI within a AR environment. Moreover, the incorpora-
tion of a novel calibration method with a tracking system
enhances the potential of the HyperMRI system making pos-
sible a seamless integration into an actual neuronavigation
environment. This cost-effective and user-friendly design, as
an evolving prototype, holds the potential to further introduce
HS in the image-guided neurosurgery field by means of the
widely validated technology of MRI. The integration of HS
technology with MR information in the computer-assisted
surgery (CAS) environment could, for example, improve
tumour border determination through tissue classification

(b) HS-MR overlapping

and enable the use of HS-detected blood vessels for brain
shift correction.

The system demonstrates a satisfactory level of accuracy
in the registration task, with the primary limitation being the
depth quality of the Azure Kinect DK camera. This camera
exhibits a systematic error of approximately 11 mm and aran-
dom error standard deviation of around 17 mm, as reported in
[10], which introduces minor differences into the registration
procedure. These errors have been mitigated by the proposed
methodology to improve the registration accuracy. The sys-
tem achieves a FRE of 1.88 mm and a TRE of 4.07 mm
in an automatic procedure without human bias, completing
the process in 5s. In contrast, manual landmark registration
achieves a slightly superior quality (3.11 mm TRE) with the
counterpart of being dependent on the operator’s experience
and requiring several minutes for the registration. To further
enhance accuracy and reduce error, future iterations of this
prototype may benefit from a more metric-accurate depth
camera with higher resolution or specifically designed for
this use case (for example with a closer working distance).
All the code and the data used in this work are public avail-
able.!

In the near future, it is awaited to evaluate the performance
of HyperMRI in real clinical environments to assess the sys-
tem’s quality under practical conditions. Additionally, it is
expected to integrate the tracking system directly into the
HyperMRI system. This integration will involve only using
external markers to estimate the camera’s position both in the
registration area and within the craniotomy site, and not the
Optitrack system. This approach aims to reduce the equip-
ment needed for system integration in an operating room,
reducing it to just two cameras and simplifying the overall
incorporation process.

! https://gitlab.citsem.upm.es/public- projects/immersive-imaging/
hypermri-system.
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